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Morphology of spinodal decomposition
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The morphology of homogeneous phases during spinodal decomposition, i.e., the scaling of the content,
shape, and connectivity of spatial structures is described by a family of morphological measures, known as
Minkowski functionals. Besides providing means to determine the characteristic length Soaestatistically
robust and computationally inexpensive way, the measures allow also one to define the crossover from the
early stage decomposition to the late stage domain growth. We observe the scaling behaviorith «
=1/3, =1/2, anda=2/3 depending on the viscosity. When approaching the spinagalwe recover the
predictionL~ (p— ps,) 2 for the early time decomposition.
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The morphological characterization of patterns becomesbe represented as a finite union of compact convexlsgts
more and more important in statistical physics since complesor instance hexagons. L& denote the class of such subsets
spatial structures emerge nowadays in many physical sy®f RY. Morphological measures are defined as functionals
tems. Phase separation kinetics is probably the most conv&: R— 1R on homogeneous domains, i.e., on subskts
nient way to generate irregular spatial patterns on a mesos R Of R%. Let us now define three general properties a

scopic scale. Such patterns arise after a sudden quench of ffictional should possess in order to be a morphological
homogeneous fluid into the two-phase coexistence regionﬂeasure.

where the fluid sgparates |nt_o the coexisting liquid and vapor (i) Additivity. The functional of the uniom\UB of two
phaseil]. A p_artlcular effort in repent years was focused.ondomains equals the sum of the functional of the single do-
the ew?entlgtlor: ?_f dlffer_ent sc::t_hnglg reglmles vlla apépropngtemains subtracted by their intersection

computer simulations, in particular molecular dynamics W(AUB)=W(A) +W(B)— W(ANB). 1)
[2.3] Glnzburg-LandaL! ”?Od‘?'B“]’ IaFt'Ce gas[5j, lattice This relation generalizes the common rule for the sum of the
Boltzmann[6-8], and dissipative particle dynami€s]. volume of two domains.

The usual approach to determine the time dependent mean (ji) Motion invariance.The morphological measure of a
domain size (t) is using the first zero or the first moment of domain A is independent of its location and orientation in
the radial distribution function. Besides being computation-space, i.e.V(gA)=W(A), wheregA denotes the translated
ally expensive and exhibiting large fluctuations in small sys-or rotated domain.
tems, the mean domain size alone cannot account for the (iii) Continuity. If a sequence of convex set§,, con-
morphology of the rich variety of geometrical shapes of do-verges towards the convex sdf for n—o, then
mains. Therefore, it is useful to look for a quantitative char-WW(K,)—W(K). Intuitively, this property expresses the fact
acterization of the morphology, i.e., of the time evolution ofthat an approximation of a convex domain by convex
content, shape, and connectivity of spatial patterns. The airpolyhedraK,, for example, also yields an approximation of
of this paper is to point out that integral geomef,17]  W(K) by W(K,,).
supp_lies a suitable family of such topological as_well as geophyiously, the are& and the boundary length of a do-
metrical descriptors which are well known a&inkowski  main obey the three conditiori§—(iii ). Another continuous,
functionalsin digital picture analysis and mathematical mor- motion invariant and additive quantity is the Euler character-
phology[12]. In a d-dimensional ambient space the numberistics y:=N"— NP, which is defined in two dimensions as
of these functionals id+ 1. In the two-dimensional case the the difference between the number of connected domdihs
three Minkowski functionals are related to familiar mea- (white) and the number of uncovered hols& (black).
sures: covered area, boundary length, and Euler characteris- A remarkable theorem in integral geometry is the com-
tic (connectivity. pleteness of the morphological measurgs$] which asserts

Nearly every continuous pattern can be decomposed ithat any additive, motion invariant and conditional continu-
black and white convex subsets using a thresholding procesus functionalV(A) defined on subsetd e R, is a linear
dure[13]. For instance, one has often an underlying pixelcombination of thed+1 Minkowski functionals, W(A)
structure due to the finite resolution of the experimentaIZE‘jzocVWV(A) with real coefficients, independent oA.
equipment or to the inherent discrete nature of computen other words, the Minkowski functionals are the complete
simulations performed on a lattice. Each pixel, e.g., squareset of morphological measures defined by the propefifies
or hexagons in two dimensions, is a compact, convex set andi). In d=2 the Minkowski functionals are related to famil-
the whole pattern is the union of all of these pixels. So let usar measures, the covered afeaW,, the boundary length
consider a homogeneous domdis- U;K;CRY, which can U=2W,, and the Euler characteristig=W, /7. We em-
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phasize that the Minkowski function&V, is homogeneous s 1000
of orderd—v, i.e, for a dilated domain A one obtains

W,(NA)=N9""W,(A). () 0.4

These relations enable one to define a time-dependent sci

ing length by the morphological measures. Because of th 0.3

properties(i)—(iii) and of the scaling relatio(®), we expect

the Minkowski functionals to be suitable measures to char

acterize the morphology of patterns in a consistent way. 02
In order to get detailed information about the spatial

structure of the spinodal decomposition, we adopted the 01

modeling of the isothermal hydrodynamics achieved in Refs

[7,8] as a lattice Boltzmann model on a 2D hexagonal lattice

' [ S, i= ' istributi 0.0 . . :
with gn|t vecitorse,, i 0_, ...,6. Theparticle dlstr_lbuthn 0 <0 1000 100 1o 16500 Tona00
functions f;(x,t) evolve in accordance to the discretized t t
Boltzmann equatiorf;(x+€; ,t+1)— f,(X,t) = Q;(x,t) with
the linearized collision ternf);(x,t)=—(f;—f%/7 intro- FIG. 1. () Time evolution of the morphological measufesU,

ducing the equilibrium distribution functiorf$, as well as  and y at the mean densitp=3.0 and the parametess=0.01,
the relaxation timer>1/2. In order to have a Van der Waals =0.60. (b) The boundary lengthw, /U(t) (dashed ling and the
fluid, the bulk free energy densitys has the formy  connectivityw,/x(t) " (thick solid ling show the scaling relation
=—pT In(1/jp—b) —ap?, whereT is the system temperature (3)1/‘;Vit? th§6expon%né50=2/310(550-53,dW1=11/,3W(z=4102), @
>N v ; : . = 7=0.6, w;=0.5, w,= , anda= =15, w;
ZHS l;();,u?faCEel Ea(:s;{())ntrl]s ilncifoatlju%aergcallicgiﬂfilr% fﬁfglr?g%y =0.5,w,=280) indicated by thin solid lines. The coefficients are

’ N chosen to separate the data.
contributions due to inhomogeneous densiji¢s). Choos-
ing a=9/49,b=2/21, the critical temperature value becomessecond morphological quantity i9:=B/N defined as the
T.=0.571. The spinodal densitie:gtp at temperaturd <T, ratio between the total lengtB of the boundary lines sepa-
are defined as the zeros of the equatigt{p)=0. For T rating black and white regions, normalized by the total num-
=0.550, one obtains the densitigs,=2.744 and pgp ber of pixels. To determin8 one has to count the numbers
=4.315. of pairs of neighbored black and white pixels.

Our subsequent simulations were mainly done on lattices The third quantity of interest, the Euler characterisfics
with 1024x 1024 nodes using periodic boundary conditions.=N“—NP, defined by the difference of the number of con-
Each simulation run was defined by the value of the meamected components, is not normalized by the total number of
densityp, and the value of the relaxation timeMost simu-  pixels in order to keep integer numbers. This quantity de-
lations were done with the value=0.01 of the surface ten- Scribes the connectivity of the domains in the lattice and,
sion constant, which ensures the width of the interface regiog.g., it equals-1 when one has a black drop in a large white
between homogeneous phases to be approximately five Idgttice and+1 vice versa. The ratiy/(UN) describes the
tice units. The lattice system was first initialized with a meanmean curvature of the boundary line separating black and
density p and 1% random fluctuations of the local density white domains. Despite its global meaning, the Euler char-
p(X) were allowed around the mean value. After each ini-2cteristics may be calculated in a local way using the addi-
tialization the system was released to evolve during 500 prellVity refation (1) as already suggested in the case of a square
liminary automaton steps at the initial temperatufg, ~ attice [13]. Thus the three morphological measufesU,
=0.580 above the critical one, then the temperature was su@dx can be simply determined from pixel counting opera-

denly changed to the final valuk;,=0.550. Starting from tOnS, i-e., using a very fast and convenient method.
this moment {(=0), the system was allowed to evolve to its N Fig. (&) we show the time dependence of the morpho-

equilibrium state while the patterns were characterized09ical measures (), U(t), andx(t) for an off-symmetric
through the values of the Minkowski functionals. A thresh-duench,p=3.0, where the fluid phase is the minority phase.
old densityp,, is introduced and the gray value at each pixe|0ne can clearly (_jlstlngwsh two dlffferent_ time regimes: the
is set to either white or black depending on whether theearly stage of _spmodal decompos_ltlon kinetics and the late
original local density valug(x) is larger or lower thamp stage of domaln growth. At earl_y umes, t.he growth of den-
respectively. Because no significant threshold depen(tjhénce Slty fluctuations Iead§ o the build up of mtgrfaces betweer_l
the Minkowgki functionals is observed aftér=200, the i mogeneous domains of the two coexisting phases. This

; . . process is accompanied by an increase of the white larea
Itohre_sgtgld will be set further to the medium density valuebelonging to the liquid phase, as well as of the boundary

The first obvious quantity describing the morphological length U of the interface. Also the Euler characteristic in-
: obvious qu y de g e pholog creases, because many disconnected components of the mi-
differences in digital images is the relative white area,

o . . . .~ -7nority phase arise. In contrast to this early stage, the late
F'_Npth/N’ .e., the numbeNpth of the pixels méthe ongi- stage domain growth is characterized by a decrease of the
nal image having the corresponding gray lep€k) greater quantitiesU and y, which is a direct consequence of the
than py,, normalized by the total numbét of pixels. The increase of the characteristic length scale. The area of the
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liquid phase remains quite constant and approaches the final 2000
value F(t—)—(p—pgad/(Piiquia— Pgas» Which is given
by the level rule of the coexistence region. The oscillations o %
of F(t) in Fig. 1(@) indicate shape fluctuations of the do- 1500 | 4 %
mains due to the redistribution of particles in the interface ~""o.
region, which are less favored at higher fluid viscosities. oo
They are driven by the surface tension and the inertia of the °"__] 1000 {26 30 34 38 42
fluid which compete at the crossover from spinodal decom- 1 p
position to domain growth. Because of phase demixing, the
boundary lengthU and the Euler characteristic approach 500
their final minimum values U(t—«)—8yF/#N and o =
x(t—)—1, which correspond to a single liquid drop of ’ @ A
areaF, immersed into the vapor phase. 0 : : ‘ : —

The magnitudes ofJ(t) and x(t) increase during the 000 001 002 003 004 005
early stage due to the formation of homogeneous domains, P~ Py
i.e., of sharp boundaries separating the phases. After do-
mains have be?r.] formed, the boundary length) as well FIG. 2. Dependence of the EuIer-characteris)(i(:t_)IZOOO
as the connectivityy(t) decrease due to the growth of the —

— (filled symbolg and the boundary lengtt(t) (open symbolsat

domains. Their maximum valués and y mark the transi- the onset of growth on the mean density(spinodal density is

tion point, i.e., the crossover from the phase development_ _ -~ .
during spinodal decomposition and the domain growth. ConPsp™ 2:744 at T=0.55, 7=0.8). The length scale.(t)~(p

_ T\ 12 4 H A - —
sequently, their positions,,(U) andt,,.{x) may be used Psp) diverges at the onset of the domain growtth[ 7=0.6

to define the transitioficrossover time t which marks the (diamonds, 7=0.7 (squarel and 7=0.8 (triangles]. It can be
i -1/2 -1

onset of domain growth and the end of the spinodal decomr—neasured either by(t) = or by U(t)"".

position. Although the values generally differ slightly, the

difference is quantitatively not relevant and both times markpixel counting, and has also a direct geometric interpretation.

the same transition in the time evolution. We will conven- Therefore, we are able to look for the scaling of the morphol-

tionally use the maximum of the boundary lengtho define  ogy.

the transition time, i.e.t 1 =t,,5(U). The crossover time The possibility to distinguish between the early time spin-

from spinodal decomposition to domain growth does not deodal decomposition and the late stage domain growth, which

pend on the surface tensienbut it has a linear dependence are delimited by the transition time, allows us to study the

on the relaxation time-. After the crossover time the volume scaling IengtrL_(p):= L(t_) at the onset of growth_,i.e., at

F(t) has approached the final value and we can consider thj ” . —
value as constant despite the decaying oscillations. If thﬁﬁe end of the decomposition regime. The lengthkloes not

inhomogeneous pattern consists of homogeneous domaiﬁigpenOI significantly on the sgrface tensiorut it depends
with sharp interfaces, i.e., if well-defined domains exist, then€arly onz. Thus « has an influence on the shape of the

domain growth process is achieved via the rearranging ofomains, but it has no singnificant influence on the length
domains without changing the relative argaof the liquid scale. The inset of Fig. 2 shows the dependence of the mor-

phase which is given by the level rule. Because the measurgdology, i.e., the Euler characteristbg_:: X(t_) and the
W,(A) are homogeneous functions of order v [see EQ.  houndary lengthJ:=U(t) of the patterns on the mean den-
(2.)]’ We assume the_ following scaling behavior of thesity p at the onsett of growth. One observes a parabolic
Minkowski functionals: . — . . .

behavior ofU(p), which reaches its maximum fgr=3.5,

F~1, U~L"Y y~L"2, (3y  l.e., forbicontinuous patterns. The Euler characterig(ip),

i.e., the mean curvature is positive as long as the high density
with the scaling length.. We have tested this assumption phase(whitfa ‘?'0main$ is the minorit)_/ phase forming many
concerning the scaling behavior of the morphology bydroplets within a sea of low density phase fox3.5. It
changing system parameters as surface tensiand relax- becomes negative in the opposite case, and it is zero for the
ation timer, and looking for the same functional behavior of SYmmetric decomposition indicating a vanishing mean cur-
U2 and . Thus, it is possible to define the characteristicvature of the boundary lines. Approaching the spinodal den-
length L(t) starting either from the Euler-characteristic Sity ps,=2.744 at T=0.550 we observe the relation
L(t):=x(t)"¥? or from the boundary lengthLy(t)  L(p—ps)~(p—psp) Y2 for the characteristic length scale
=U()h of spinodal decomposito(Fig. 2). The scaling is consistent

There are other possibilities to define length scales of spagjith the prediction of the Cahn-Hilliard theory of early time

tial patterns such as the first zero of the correlation function_ . . .=
or the first moment of the wavelength distribution. Thes(;-%pmodal decompositiofi]. For the onset tim¢ we ohserve

definitions, although widely used by many authors, are recthe analogous relation (p)~ L (p), indicating a density in-
ognized to be computationally expensi&. The definition  dependent mean velocity/t of the fluid particles during
(3) of the lengthL allows a faster computation algorithm, the early stage, which depends only on the temperalure
because it does not involve Fourier transformations but onlfCahn’s linear theory of spinodal decomposition predicts for
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the time scaleau*1~(p—p;p)*2 of the fastest growing mode exponenta=1/3, especially for small system sizes and for
when approaching the spinodal density, i.e., a much fastghe late stage regime, where the number of homogeneous
increase than fot . droplets vanish and statistical fluctuations become important.
In Fig. 1(b) we showU ~(t) andy~Y¥t), i.e., using the Generally, fluctuations of the morphological measures are
relation (3) the lengthL (t) as function of time. We observe Small due to the additivity relatioitl), in contrast to the
the scaling behaviot(t)~t* with three different scaling domain size calculated from the first zero of the radial dis-
exponentse for various hydrodynamic regimes, one with j[r|but|on function. Since morphologlca] measures show scal-
a=2/3 for low viscosities ¢=0.54, kinetic regimg a ing also for large domains at later tlm_es, one can extract
=1/2 for intermediate valuesr& 0.6), anda= 1/3 for high rehables_vglues folL from these quantities, even in cases
viscosities = 1.5), which was not reported in RéB] but ~ Where this is not possible by other means.
is well established by the Lifshitz-Slyuzov-Wagner theory !N conclusion, we made an attempt towards the character-
[1]. At higher viscosities we do not observe scaling at all aization of the time evolution of the morphology of phase
least up tot~10P time steps. We did several runs and ob- separation. We introduced a_method to Qescrlbe the morphol-
tained identical behavior, but the data we show in Fig. 1 aré’gy_Of patte_rns and to define the typ|cal length scale. In
obtained after individual runs without any averaging proce-part'CUIar’ this method a”O.V.VS us to define the crossover from
dure, which is not necessary in order to obtain accurate réN€ €2rly stage decomposition to the late stage growth and to
sults. In contrast to Ref8], we interpret the scaling regime 2nalyze the morphology of decomposition patterns at early
with a=2/3 not as the late stage, even it is found for lowlimes. A comparision of our results with simulations of

viscosities. It is the same regime where we observe Stron§|nzbur?-ggndauhmgqf(fals will bebdone in future wodrk mdor—
oscillations inF(t) andU(t). As long as the fluid velocities er to elucidate the difterences between conserved and non-

are not damped by viscous forces, the kinetic terms in th Qnserveq order parameters, for Instance. We expect the
Navier-Stokes equation are dominant. This is the very earl |nko_wsk| functionals to be especially f_rwtful in three di-
regime established after spinodal decomposition and it ca ensions Wher_e the topology of th_e spatial structure changes
be seen only if it is not damped by viscous forces. Thesgons_lderably with the mean density The measures may
velocities in the beginning of phase seperation have little t?:)roylde a mean to study the dependence of the scaling be-
do with the velocities during domain growth that are relevan avior on the morphology.
for the exponenta=2/3 at late times. Moreover, we find
some evidence that there is a crossover frem?2/3 to « V.S. is indebted to Professor Siegfried Dietrich for pro-
=1/2 as indicated in Fig.(b) for 7=0.6. viding the possibility of a stay in his department and ac-
We emphasize that the statistical robustness of the moknowledges also the financial support of the Romanian Min-
phological measures is essential for the determination of thistry of Research and Technology, supervised through the
lengthL and, in particular, for the determination of the new Romanian Space Agency.
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