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Morphology of spinodal decomposition
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The morphology of homogeneous phases during spinodal decomposition, i.e., the scaling of the content,
shape, and connectivity of spatial structures is described by a family of morphological measures, known as
Minkowski functionals. Besides providing means to determine the characteristic length scaleL in a statistically
robust and computationally inexpensive way, the measures allow also one to define the crossover from the
early stage decomposition to the late stage domain growth. We observe the scaling behaviorL;ta with a
51/3, a51/2, anda52/3 depending on the viscosity. When approaching the spinodalrsp , we recover the
predictionL;(r2rsp)

21/2 for the early time decomposition.
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The morphological characterization of patterns becom
more and more important in statistical physics since comp
spatial structures emerge nowadays in many physical
tems. Phase separation kinetics is probably the most co
nient way to generate irregular spatial patterns on a me
scopic scale. Such patterns arise after a sudden quench o
homogeneous fluid into the two-phase coexistence reg
where the fluid separates into the coexisting liquid and va
phases@1#. A particular effort in recent years was focused
the evidentiation of different scaling regimes via appropri
computer simulations, in particular molecular dynam
@2,3#, Ginzburg-Landau models@4#, lattice gas@5#, lattice
Boltzmann@6–8#, and dissipative particle dynamics@9#.

The usual approach to determine the time dependent m
domain sizeL(t) is using the first zero or the first moment
the radial distribution function. Besides being computatio
ally expensive and exhibiting large fluctuations in small s
tems, the mean domain size alone cannot account for
morphology of the rich variety of geometrical shapes of d
mains. Therefore, it is useful to look for a quantitative ch
acterization of the morphology, i.e., of the time evolution
content, shape, and connectivity of spatial patterns. The
of this paper is to point out that integral geometry@10,11#
supplies a suitable family of such topological as well as g
metrical descriptors which are well known asMinkowski
functionalsin digital picture analysis and mathematical mo
phology @12#. In a d-dimensional ambient space the numb
of these functionals isd11. In the two-dimensional case th
three Minkowski functionals are related to familiar me
sures: covered area, boundary length, and Euler charac
tic ~connectivity!.

Nearly every continuous pattern can be decompose
black and white convex subsets using a thresholding pro
dure @13#. For instance, one has often an underlying pi
structure due to the finite resolution of the experimen
equipment or to the inherent discrete nature of compu
simulations performed on a lattice. Each pixel, e.g., squa
or hexagons in two dimensions, is a compact, convex set
the whole pattern is the union of all of these pixels. So let
consider a homogeneous domainA5ø iKi,Rd, which can
561063-651X/97/56~4!/3761~4!/$10.00
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be represented as a finite union of compact convex setsKi ,
for instance hexagons. LetR denote the class of such subse
of Rd. Morphological measures are defined as function
W: R→R on homogeneous domains, i.e., on subsetsA
PR of Rd. Let us now define three general properties
functional should possess in order to be a morpholog
measure:

~i! Additivity. The functional of the unionAøB of two
domains equals the sum of the functional of the single
mains subtracted by their intersection

W~AøB!5W~A!1W~B!2W~AùB!. ~1!
This relation generalizes the common rule for the sum of
volume of two domains.

~ii ! Motion invariance.The morphological measure of
domain A is independent of its location and orientation
space, i.e.,W(gA)5W(A), wheregA denotes the translate
or rotated domain.

~iii ! Continuity. If a sequence of convex setsKn con-
verges towards the convex setK for n→`, then
W(Kn)→W(K). Intuitively, this property expresses the fa
that an approximation of a convex domainK by convex
polyhedraKn , for example, also yields an approximation
W(K) byW(Kn).

Obviously, the areaF and the boundary lengthU of a do-
main obey the three conditions~i!–~iii !. Another continuous,
motion invariant and additive quantity is the Euler charact
istics x:5Nw2Nb, which is defined in two dimensions a
the difference between the number of connected domainsNw

~white! and the number of uncovered holesNb ~black!.
A remarkable theorem in integral geometry is the co

pleteness of the morphological measures@11# which asserts
that any additive, motion invariant and conditional contin
ous functionalW(A) defined on subsetsAPR, is a linear
combination of thed11 Minkowski functionals,W(A)
5(n50

d cnWn(A) with real coefficientscn independent ofA.
In other words, the Minkowski functionals are the comple
set of morphological measures defined by the properties~i!–
~iii !. In d52 the Minkowski functionals are related to fami
iar measures, the covered areaF5W0 , the boundary length
U52W1 , and the Euler characteristicx5W2 /p. We em-
R3761 © 1997 The American Physical Society
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phasize that the Minkowski functionalWn is homogeneous
of orderd2n, i.e, for a dilated domainlA one obtains

Wn~lA!5ld2nWn~A! . ~2!

These relations enable one to define a time-dependent
ing length by the morphological measures. Because of
properties~i!–~iii ! and of the scaling relation~2!, we expect
the Minkowski functionals to be suitable measures to ch
acterize the morphology of patterns in a consistent way.

In order to get detailed information about the spat
structure of the spinodal decomposition, we adopted
modeling of the isothermal hydrodynamics achieved in Re
@7,8# as a lattice Boltzmann model on a 2D hexagonal latt
with unit vectorseW i , i 50, . . . ,6. Theparticle distribution
functions f i(xW ,t) evolve in accordance to the discretize
Boltzmann equationf i(xW1eW i ,t11)2 f i(xW ,t)5V i(xW ,t) with
the linearized collision termV i(xW ,t)52( f i2 f i

eq)/t intro-
ducing the equilibrium distribution functionsf i

eq , as well as
the relaxation timet.1/2. In order to have a Van der Waa
fluid, the bulk free energy densityc has the form c
52rT ln(1/r2b)2ar2, whereT is the system temperatur
and r(xW ,t)5( i f i(xW ,t) the local particle density. Addition
ally, a surface tensionk is introduced accounting for energ
contributions due to inhomogeneous densitiesr(xW ). Choos-
ing a59/49,b52/21, the critical temperature value becom
Tc50.571. The spinodal densitiesrsp

6 at temperatureT,Tc

are defined as the zeros of the equationc9(r)50. For T
50.550, one obtains the densitiesrsp

2 52.744 and rsp
1

54.315.
Our subsequent simulations were mainly done on latti

with 102431024 nodes using periodic boundary condition
Each simulation run was defined by the value of the m
densityr, and the value of the relaxation timet. Most simu-
lations were done with the valuek50.01 of the surface ten
sion constant, which ensures the width of the interface reg
between homogeneous phases to be approximately five
tice units. The lattice system was first initialized with a me
density r and 1% random fluctuations of the local dens
r(xW ) were allowed around the mean value. After each i
tialization the system was released to evolve during 500
liminary automaton steps at the initial temperatureTin
50.580 above the critical one, then the temperature was
denly changed to the final valueTf in50.550. Starting from
this moment (t50), the system was allowed to evolve to i
equilibrium state while the patterns were characteriz
through the values of the Minkowski functionals. A thres
old densityr th is introduced and the gray value at each pix
is set to either white or black depending on whether
original local density valuer(xW ) is larger or lower thanr th ,
respectively. Because no significant threshold dependenc
the Minkowski functionals is observed aftert'200, the
threshold will be set further to the medium density val
r th53.5.

The first obvious quantity describing the morphologic
differences in digital images is the relative white are
F:5Nr th

/N, i.e., the numberNr th
of the pixels in the origi-

nal image having the corresponding gray levelr(xW ) greater
than r th , normalized by the total numberN of pixels. The
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second morphological quantity isU:5B/N defined as the
ratio between the total lengthB of the boundary lines sepa
rating black and white regions, normalized by the total nu
ber of pixels. To determineB one has to count the numbe
of pairs of neighbored black and white pixels.

The third quantity of interest, the Euler characteristicsx
5Nw2Nb, defined by the difference of the number of co
nected components, is not normalized by the total numbe
pixels in order to keep integer numbers. This quantity d
scribes the connectivity of the domains in the lattice a
e.g., it equals21 when one has a black drop in a large wh
lattice and11 vice versa. The ratiox/(UN) describes the
mean curvature of the boundary line separating black
white domains. Despite its global meaning, the Euler ch
acteristics may be calculated in a local way using the ad
tivity relation ~1! as already suggested in the case of a squ
lattice @13#. Thus the three morphological measuresF, U,
andx can be simply determined from pixel counting oper
tions, i.e., using a very fast and convenient method.

In Fig. 1~a! we show the time dependence of the morph
logical measuresF(t), U(t), andx(t) for an off-symmetric
quench,r53.0, where the fluid phase is the minority phas
One can clearly distinguish two different time regimes: t
early stage of spinodal decomposition kinetics and the
stage of domain growth. At early times, the growth of de
sity fluctuations leads to the build up of interfaces betwe
homogeneous domains of the two coexisting phases. T
process is accompanied by an increase of the white areF
belonging to the liquid phase, as well as of the bound
length U of the interface. Also the Euler characteristic i
creases, because many disconnected components of th
nority phase arise. In contrast to this early stage, the
stage domain growth is characterized by a decrease of
quantitiesU and x, which is a direct consequence of th
increase of the characteristic length scale. The area of

FIG. 1. ~a! Time evolution of the morphological measuresF, U,
and x at the mean densityr53.0 and the parametersk50.01, t
50.60. ~b! The boundary lengthw1 /U(t) ~dashed line!, and the
connectivityw2 /x(t)21/2 ~thick solid line! show the scaling relation
~3! with the exponentsa52/3 (t50.53, w151, w25400), a
51/2 (t50.6, w150.5, w251000), and a51/3 (t51.5, w1

50.5,w2580) indicated by thin solid lines. The coefficientswi are
chosen to separate the data.
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liquid phase remains quite constant and approaches the
value F(t→`)→(r2rgas)/(r l iquid2rgas), which is given
by the level rule of the coexistence region. The oscillatio
of F(t) in Fig. 1~a! indicate shape fluctuations of the d
mains due to the redistribution of particles in the interfa
region, which are less favored at higher fluid viscositi
They are driven by the surface tension and the inertia of
fluid which compete at the crossover from spinodal deco
position to domain growth. Because of phase demixing,
boundary lengthU and the Euler characteristic approa
their final minimum values U(t→`)→8AF/pN and
x(t→`)→1, which correspond to a single liquid drop o
areaF, immersed into the vapor phase.

The magnitudes ofU(t) and x(t) increase during the
early stage due to the formation of homogeneous doma
i.e., of sharp boundaries separating the phases. After
mains have been formed, the boundary lengthU(t) as well
as the connectivityx(t) decrease due to the growth of th
domains. Their maximum valuesŪ and x̄ mark the transi-
tion point, i.e., the crossover from the phase developm
during spinodal decomposition and the domain growth. C
sequently, their positionstmax(U) and tmax(x) may be used
to define the transition~crossover! time t̄ which marks the
onset of domain growth and the end of the spinodal dec
position. Although the values generally differ slightly, th
difference is quantitatively not relevant and both times m
the same transition in the time evolution. We will conve
tionally use the maximum of the boundary lengthU to define
the transition time, i.e.,t̄ :5tmax(U). The crossover timet̄
from spinodal decomposition to domain growth does not
pend on the surface tensionk but it has a linear dependenc
on the relaxation timet. After the crossover time the volum
F(t) has approached the final value and we can consider
value as constant despite the decaying oscillations. If
inhomogeneous pattern consists of homogeneous dom
with sharp interfaces, i.e., if well-defined domains exist,
domain growth process is achieved via the rearranging
domains without changing the relative areaF of the liquid
phase which is given by the level rule. Because the meas
Wn(A) are homogeneous functions of orderd2n @see Eq.
~2!#, we assume the following scaling behavior of t
Minkowski functionals:

F;1, U;L21, x;L22 , ~3!

with the scaling lengthL. We have tested this assumptio
concerning the scaling behavior of the morphology
changing system parameters as surface tensionk and relax-
ation timet, and looking for the same functional behavior
U2 and x. Thus, it is possible to define the characteris
length L(t) starting either from the Euler-characterist
Lx(t):5x(t)21/2 or from the boundary lengthLU(t)
:5U(t)21.

There are other possibilities to define length scales of s
tial patterns such as the first zero of the correlation funct
or the first moment of the wavelength distribution. The
definitions, although widely used by many authors, are r
ognized to be computationally expensive@3#. The definition
~3! of the lengthL allows a faster computation algorithm
because it does not involve Fourier transformations but o
nal
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pixel counting, and has also a direct geometric interpretat
Therefore, we are able to look for the scaling of the morph
ogy.

The possibility to distinguish between the early time sp
odal decomposition and the late stage domain growth, wh

are delimited by the transition timet̄ , allows us to study the

scaling lengthL̄ (r):5L( t̄ ) at the onset of growtht̄ , i.e., at

the end of the decomposition regime. The lengthL̄ does not
depend significantly on the surface tensionk but it depends
linearly on t. Thusk has an influence on the shape of t
domains, but it has no singnificant influence on the len
scale. The inset of Fig. 2 shows the dependence of the m

phology, i.e., the Euler characteristicx̄ :5x( t̄ ) and the

boundary lengthŪ:5U( t̄ ) of the patterns on the mean de

sity r at the onsett̄ of growth. One observes a parabol

behavior ofŪ(r), which reaches its maximum forr53.5,

i.e., for bicontinuous patterns. The Euler characteristicx̄ (r),
i.e., the mean curvature is positive as long as the high den
phase~white domains! is the minority phase forming man
droplets within a sea of low density phase forr,3.5. It
becomes negative in the opposite case, and it is zero for
symmetric decomposition indicating a vanishing mean c
vature of the boundary lines. Approaching the spinodal d
sity rsp

2 52.744 at T50.550 we observe the relatio

L̄ (r→rsp);(r2rsp
2 )21/2 for the characteristic length scal

of spinodal decompositon~Fig. 2!. The scaling is consisten
with the prediction of the Cahn-Hilliard theory of early tim

spinodal decomposition@1#. For the onset timet̄ we observe

the analogous relationt̄ (r); L̄ (r), indicating a density in-

dependent mean velocityL̄ / t̄ of the fluid particles during
the early stage, which depends only on the temperatureT.
Cahn’s linear theory of spinodal decomposition predicts

FIG. 2. Dependence of the Euler-characteristicx( t̄ )/2000

~filled symbols! and the boundary lengthU( t̄ ) ~open symbols! at
the onset of growth on the mean densityr ~spinodal density is

rsp
2 52.744 at T50.55, t50.8). The length scaleL( t̄ );(r

2rsp
2 )21/2 diverges at the onset of the domain growtht̄ @t50.6

~diamonds!, t50.7 ~squares!, and t50.8 ~triangles!#. It can be

measured either byx( t̄ )21/2 or by U( t̄ )21.
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the time scalev21;(r2rsp
2 )22 of the fastest growing mode

when approaching the spinodal density, i.e., a much fa
increase than fort̄ .

In Fig. 1~b! we showU21(t) andx21/2(t), i.e., using the
relation ~3! the lengthL(t) as function of time. We observ
the scaling behaviorL(t);ta with three different scaling
exponentsa for various hydrodynamic regimes, one wi
a52/3 for low viscosities (t50.54, kinetic regime!, a
51/2 for intermediate values (t50.6), anda51/3 for high
viscosities (t51.5), which was not reported in Ref.@8# but
is well established by the Lifshitz-Slyuzov-Wagner theo
@1#. At higher viscosities we do not observe scaling at all
least up tot;106 time steps. We did several runs and o
tained identical behavior, but the data we show in Fig. 1
obtained after individual runs without any averaging pro
dure, which is not necessary in order to obtain accurate
sults. In contrast to Ref.@8#, we interpret the scaling regim
with a52/3 not as the late stage, even it is found for lo
viscosities. It is the same regime where we observe str
oscillations inF(t) andU(t). As long as the fluid velocities
are not damped by viscous forces, the kinetic terms in
Navier-Stokes equation are dominant. This is the very e
regime established after spinodal decomposition and it
be seen only if it is not damped by viscous forces. Th
velocities in the beginning of phase seperation have little
do with the velocities during domain growth that are relev
for the exponenta52/3 at late times. Moreover, we fin
some evidence that there is a crossover froma52/3 to a
51/2 as indicated in Fig. 1~b! for t50.6.

We emphasize that the statistical robustness of the m
phological measures is essential for the determination of
lengthL and, in particular, for the determination of the ne
-
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exponenta51/3, especially for small system sizes and f
the late stage regime, where the number of homogene
droplets vanish and statistical fluctuations become import
Generally, fluctuations of the morphological measures
small due to the additivity relation~1!, in contrast to the
domain size calculated from the first zero of the radial d
tribution function. Since morphological measures show sc
ing also for large domains at later times, one can extr
reliables values forL from these quantities, even in cas
where this is not possible by other means.

In conclusion, we made an attempt towards the charac
ization of the time evolution of the morphology of pha
separation. We introduced a method to describe the morp
ogy of patterns and to define the typical length scale.
particular, this method allows us to define the crossover fr
the early stage decomposition to the late stage growth an
analyze the morphology of decomposition patterns at e
times. A comparision of our results with simulations
Ginzburg-Landau models will be done in future work in o
der to elucidate the differences between conserved and
conserved order parameters, for instance. We expect
Minkowski functionals to be especially fruitful in three d
mensions where the topology of the spatial structure chan
considerably with the mean densityr. The measures may
provide a mean to study the dependence of the scaling
havior on the morphology.
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